
UNIT-1

Q1. What is SoŌware Engineering?

 It is the systemaƟc approach to developing soŌware.

 Uses engineering principles to ensure soŌware is reliable and efficient.

 Covers the enƟre soŌware lifecycle: requirements, design, development, tesƟng,
deployment, and maintenance.

ObjecƟves of SoŌware Engineering:

 Develop high-quality soŌware that meets user needs.

 Ensure reliability and performance.

 Allow easy maintenance and future updates.

 Ensure cost-effecƟve and on-Ɵme delivery.

 Support scalability for future growth.

 Encourage team collaboraƟon and organized development.

Q2. Problems Faced in SoŌware Engineering

1. Changing Requirements

 Client needs may change frequently.

 Causes rework and delays.

2. Time and Budget Constraints

 Projects oŌen exceed esƟmated Ɵme or cost.

 Leads to compromised quality or features.

3. Poor CommunicaƟon

 Misunderstanding between clients and developers.

 Results in incorrect or incomplete soŌware.

4. Complexity

 Large systems are hard to understand and manage.

 Increases bugs and errors.

5. Quality Assurance

 Difficult to detect all bugs.

 Incomplete tesƟng leads to faults in the final product.

6. Maintenance

 UpdaƟng old soŌware is hard, especially if poorly documented.

 Can be more costly than iniƟal development.

7. Lack of Proper Tools

 Using outdated or wrong tools reduces producƟvity.

 Affects the quality of the final soŌware.

8. Security Issues

 SoŌware is vulnerable to cyber aƩacks.

 ProtecƟng user data is difficult but essenƟal.

Q3. SoŌware Engineering as a Layered Technology :-

SoŌware Engineering is called a layered technology because it is built on a framework of
interdependent layers, where each layer supports the one above it. This layered structure ensures a
systemaƟc approach to soŌware development.

꼡 1. Quality Focus (Core Layer)

 The foundaƟon layer of soŌware engineering.

 Ensures the delivery of high-quality soŌware.

 Focuses on reliability, efficiency, maintainability, and usability.

 Acts as a guiding principle across all other layers.



꼡 2. Process Layer

 Defines the framework for soŌware development.

 Describes the soŌware life cycle and acƟviƟes involved.

 Ensures project management, planning, and control.

 Common process models:

o Waterfall Model

o Spiral Model

o Agile Methodology

o DevOps

꼡 3. Methods Layer

 Provides technical methods for soŌware development.

 Covers acƟviƟes like:

o Requirement analysis

o SoŌware design

o Coding

o TesƟng

 Uses tools like UML diagrams, flowcharts, and DFDs (Data Flow Diagrams).

꼡 Tools Layer

 Supports the process and methods using automated or semi-automated tools.

 Improves producƟvity, accuracy, and efficiency.

 Common tools include:

o IDEs (e.g., Eclipse, Visual Studio)

o Version Control Systems (e.g., Git)

o TesƟng Tools (e.g., Selenium, JUnit)

o Project Management Tools (e.g., JIRA)

꼡 4. Interdependency of Layers

 Each layer depends on the support and structure of the lower layers.

 Quality is influenced by the strength of processes, methods, and tools used.

 Ensures consistency, scalability, and structured development.

脥� Conclusion

 The layered approach in soŌware engineering ensures a disciplined, repeatable, and
manageable way to build soŌware.

 It enhances soŌware quality, improves team coordinaƟon, and reduces development risks.

Q4. SoŌware Components –

 A soŌware component is a self-contained, independent, and reusable unit of soŌware that
performs a specific funcƟon within a larger system.

 It consists of interface and implementaƟon:

o Interface: Defines how other components interact with it.

o ImplementaƟon: The internal logic or code of the component.

Key Elements of a SoŌware Component

1. Component Interface

o Exposes public methods, properƟes, and events.

o Defines communicaƟon with other components.

2. Component ImplementaƟon

o Contains core code (business logic, data processing).

o Hidden to support encapsulaƟon.

3. Component Metadata

o Provides version, dependencies, and documentaƟon.

Types of SoŌware Components

1. PresentaƟon Components (UI Layer)

o Manages user interacƟon and display.

o Example: Login page, menu bar.

2. Business Logic Components

o Handles core processing and decision-making tasks.

o Example: Tax computaƟon, order processing.

3. Data Access Components

o Manages database interacƟons.

o Example: JDBC, DAO.

4. UƟlity Components

o Provides general-purpose funcƟonaliƟes.

o Example: Logging, encrypƟon uƟliƟes.

5. Middleware Components

o Facilitates communicaƟon between distributed components.

o Example: CORBA, COM, RMI.

 Q5. Main Characteristics of Good Software / Software Quality Attributes :-

SoŌware Quality AƩributes –

 these are the non-funcƟonal requirements that describe how well the soŌware performs,
rather than what it does.

 this help evaluate the overall quality of the system.

1. Correctness (Functionality)
→ Software meets user requirements and performs intended tasks.
→ Accurate output based on given inputs.

2. Reliability
→ Operates consistently without failures or crashes.
→ Handles errors and continues to function smoothly.

3. Usability
→ Software is easy to learn and use.
→ Intuitive interface with simple navigation.

4. Efficiency
→ Uses minimal resources (memory, CPU, etc.) for fast performance.
→ Optimized speed even under heavy load.

5. Maintainability
→ Software is easy to update and fix.
→ Well-documented code for easier debugging and enhancements.

6. Portability
→ Can run on multiple platforms (Windows, Linux, etc.) with little modification.
→ Adapts easily to different environments.

7. Security
→ Protects data from unauthorized access and attacks.
→ Uses encryption and authentication for safety.

8. Scalability
→ Handles increased demand efficiently (both horizontally and vertically).
→ Grows without sacrificing performance.

9. Flexibility
→ Easily adapts to changing requirements.
→ Supports new features and upgrades.

10. Safety
→ Ensures safe operation, especially for critical applications (e.g., medical, aerospace).
→ Minimizes risks during software execution.

Q6. SoŌware Crisis -

Main Reasons:

1. Complexity of modern soŌware systems.

2. No standard methods in development.

3. Fast tech changes make it hard to keep up.

4. Poor planning and management of projects.

5. Too many demands for new soŌware and features.

6. Difficult to esƟmate Ɵme and costs accurately.

Main Results:

1. Poor quality soŌware with bugs and errors.

2. Exceeded costs and deadlines.

3. Hard to maintain and update soŌware.

4. FrustraƟon for developers and users.

5. Loss of trust in the soŌware development process.

6. Late delivery of soŌware

Q7. What is SoŌware Quality & three dimensions of it ?

1. It means the soŌware works correctly and meets user needs.

2. It should perform all tasks as expected and required.

3. The soŌware must be reliable, fast, and secure.

4. It should be easy to fix, update, and maintain.

5. Good quality soŌware has fewer bugs and is user-friendly.

6. Overall, it should be fit for use in real-world condiƟons.

Three Dimensions of Software Quality :-

1. Quality of Design

o How well the software is planned to meet user needs and requirements.

o Focuses on architecture and features.

o It ensures a strong foundaƟon.

2. Quality of Conformance

o How closely the software follows the design specifications.

o Ensures the software is built correctly with no defects.

o It ensures the soŌware matches that foundaƟon.

3. Quality of Use

o How well the software performs in real-world conditions.

o Ensures the software is user-friendly, reliable, and meets expectations.

o It ensures the soŌware works well in pracƟce, meeƟng user needs.

Q8. What is SoŌware Development Life Cycle (SDLC)?

 It stands for SoŌware Development Life Cycle.
 It is a structured approach for developing soŌware, from iniƟal planning to maintenance.
 Ensures high-quality soŌware is delivered on Ɵme and within budget.
 Helps in systemaƟc planning, design, development, tesƟng, and deployment of soŌware.
 It is a pictorial & diagrammaƟc representaƟon of the soŌware life cycle.

Stages of SDLC :-

1. Planning

 Define the project goals and plan the enƟre process.
 Key AcƟviƟes:

 Set scope (what the soŌware will do).

 Define resources, budget, and Ɵmeline.

 IdenƟfy project risks and create a risk management plan.

2. Analysis

 Gather detailed requirements from the users.
 Key AcƟviƟes:

 Collect funcƟonal requirements (what the soŌware should do).

 IdenƟfy non-funcƟonal requirements (how the soŌware should perform).

 Create a requirement specificaƟon document to guide development.

3. Design

 Plan how the soŌware will be structured and built.
 Key AcƟviƟes:

 Create system architecture (high-level design).

 Plan database and module design (low-level design).

 Define how modules will interact with each other.

4. Development (Coding)

 Convert design into working code.
 Key AcƟviƟes:

 Write the source code based on design documents.

 Follow coding standards and guidelines.

 Conduct unit tesƟng to check for coding errors.

5. TesƟng

 Ensure the soŌware works correctly and has no bugs.
 Key AcƟviƟes:

 Perform unit tesƟng (tesƟng individual parts).

 Perform integraƟon tesƟng (tesƟng combined components).

 Conduct user acceptance tesƟng (UAT) with real users to validate the
soŌware.

6. Deployment

 Release the soŌware for users to use.
 Key AcƟviƟes:

 Install the soŌware on user systems or servers.

 Ensure everything works in the live environment.

 Provide training and documentaƟon for users.

7. Maintenance

 Keep the soŌware running smoothly aŌer deployment.
 Key AcƟviƟes:

 Fix bugs reported by users.

 Add new features or improvements based on feedback.

 Perform regular updates to maintain soŌware quality.

Q9. Prototype Model of SDLC –

 It is a soŌware development method where a working model (prototype) of the system is
quickly built, shown to the user, and repeatedly improved based on feedback.

 This helps in understanding unclear requirements early in the process.

Key Steps of Prototype Model :

1. Requirements Gathering

o Collect basic and unclear requirements from the user.

o Focus is on what the user wants, not full details.

2. Quick Design

o Create a rough design with main features and user interface.

3. Build Prototype

o Develop a sample version (mock-up) of the soŌware.

o May not have full funcƟonality.

4. Customer EvaluaƟon of Prototype

o Show the prototype to the user.

o Get feedback on features, flow, and design.

5. Refine Requirements

o Use feedback to modify and improve the design.

o Repeat steps 2 → 3 → 4 → 5 unƟl the user is saƟsfied.

6. Design

o Create a final detailed design of the actual system.

7. ImplementaƟon

o Write the full code to develop the complete system.

8. TesƟng

o Test the soŌware for errors and funcƟonality.

9. Maintenance

o Fix bugs, update features, and support the system aŌer delivery.

 Advantages Over ConvenƟonal Models (like Waterfall):

 Handles unclear or changing requirements beƩer.

 Customer feedback is included from the beginning.

 Reduces the risk of failure.

 Saves Ɵme and cost in the long run.

 Helps visualize the final product early.

脥� Advantages:

 Users understand the system early.

 BeƩer communicaƟon with users.

 Errors found early.

 More flexible than Waterfall.

 Disadvantages:

 Takes more Ɵme due to changes.

 Users may think prototype is final.

 Frequent changes can increase cost.

Q10. IteraƟve Waterfall Model –

 It is an improved version of the tradiƟonal Waterfall Model.
 Unlike the original, it allows feedback and revisions between stages.
 Each phase flows to the next like a waterfall, but iteraƟons (repeats) are possible if errors or

changes are needed.

Phases and AcƟviƟes

1. Requirement Analysis
 Understand what the user wants.
 Collect and document all system requirements.
 Output: Requirement SpecificaƟon Document.

2. Design
 Plan the architecture of the system.
 Divide into modules, define input/output, and database design.
 Output: System Design Document.

3. ImplementaƟon (Coding)
 Developers write code based on the design.
 Use programming languages and tools.
 Output: Working soŌware modules.

4. TesƟng
 Test soŌware to find and fix bugs.
 Unit tesƟng, integraƟon tesƟng, and system tesƟng.
 Output: Bug-free soŌware.

5. Deployment & Maintenance

 Deploy the soŌware to the user.
 Fix issues and update soŌware as needed.
 Output: Maintained and updated soŌware.

Q12. Spiral Model of SDLC –

 It is a risk-driven soŌware development process that combines the features of the Waterfall
and Prototyping models.

 The Spiral Model is a flexible and iteraƟve approach to soŌware development that combines
elements of both the Waterfall and Prototype models.

 It follows repeated cycles (spirals) where each loop represents a phase in development.

Phases of Spiral Model:-

Each spiral consists of four key phases:

1. Planning Phase

 Collect requirements from the customer.

 Define objecƟves and alternaƟves for the next development cycle.

 IdenƟfy constraints (budget, Ɵme, technology).

 Output: Requirements & Planning Documents.

2. Risk Analysis Phase

 IdenƟfy possible risks in technology, cost, Ɵme, performance, etc.

 Analyze how to reduce or avoid these risks.

 Create a prototype if needed to reduce uncertainty.

굓굔굕굖 Why important- RISK ANALYSIS :

 This model is centered around risk management
 Each loop starts with Risk Analysis, making sure problems are solved before development.
 It gives a flexible and safe approach for complex, high-budget, and uncertain projects.
 Helps in early detecƟon of major issues, reducing cost of late-stage errors.

 Output: Risk resoluƟon plan & updated prototype (if needed).

3. Engineering Phase

 Actual design, coding, and tesƟng of the soŌware takes place.

 Build version based on planned requirements and resolved risks.

 Output: Working soŌware version.

4. EvaluaƟon Phase

 Customer evaluates the soŌware output.

 Feedback is collected for the next cycle.

 Decide whether to conƟnue, modify, or stop development.

 Output: Approval to proceed to the next spiral.

How Spiral Model Works:

 The model is repeated in loops, each producing a more refined version of the soŌware.

 Each spiral loop = one complete SDLC cycle (Plan → Risk → Build → Review).

Advantages :-

 Best suited for large and high-risk projects.

 Risks are handled early and carefully.

 Customer feedback is involved at every stage.

Q11. How Waterfall & Prototype Models Are Accommodated in the Spiral Model :

 The Spiral Model effecƟvely combines the strengths of both the Waterfall Model and the
Prototype Model to provide a flexible, risk-driven soŌware development process.

 It uses the structured, phase-wise approach of the Waterfall Model for stable and well-
defined parts of the project, ensuring discipline and clarity.

 Simultaneously, it incorporates prototyping techniques to handle uncertain, high-risk areas
by enabling early user feedback and iteraƟve refinement.

 By integraƟng these two models within its iteraƟve spirals, the Spiral Model achieves a
balance between predictability and flexibility, making it ideal for complex and large-scale
soŌware projects.

 It reduces risks, adapts to changing requirements, and ensures beƩer system quality through
conƟnuous evaluaƟon and improvement.

List Some SoŌware Process Paradigms :-

1) Procedural Paradigms
2) Data Driven Paradigms
3) Object oriented Paradigms

Q13. EvoluƟonary Development Model (EDM)

 The EvoluƟonary Development Model is a soŌware development approach where the
system is developed incrementally, allowing it to evolve over Ɵme.

 It focuses on building an iniƟal version quickly, then improving it through mulƟple
iteraƟons based on user feedback.

 Incremental delivery of soŌware.

 ConƟnuous feedback from users aŌer each iteraƟon.

 Overlapping phases (requirements, design, coding, tesƟng).

 Helps in handling changing or unclear requirements.

 OŌen used in Agile and DevOps environments.

Process Phases:

1. IniƟal Requirement Gathering:

o Collect basic and core requirements.

o Not all requirements need to be fully defined iniƟally.

2. IniƟal System Development:

o A basic working version (core funcƟonaliƟes) is developed.

3. User EvaluaƟon:

o The user tests the version and provides feedback.

o Feedback includes suggesƟons, errors, and new requirements.

4. Refinement and Enhancement:

o Developers update the system by adding more features or correcƟng issues.

o The process repeats in several evoluƟonary cycles.

5. Final System Delivery:

o AŌer several iteraƟons, a full and final system is delivered.

Q14. Which is More Important: Product or Process? – Summary in Points

꼡 1. Product:

 The final soŌware delivered to the customer.

 Includes features, performance, UI, and documentaƟon.

 Directly impacts user saƟsfacƟon and business value.

 A good product is the main goal of soŌware engineering.

꼡 2. Process:

 The methodology or approach used to build the product.

 Includes planning, design, coding, tesƟng, and maintenance.

 Ensures efficiency, quality, and risk management.

 A good process results in consistent and maintainable products.

꼡 3. Why Product is Important:

 Final output that meets customer requirements.

 Affects company reputaƟon and success.

 Used for performance evaluaƟon and feedback.

꼡 4. Why Process is Important:

 Defines how efficiently and effecƟvely a product is built.

 Reduces errors, rework, and development cost.

 Ensures repeatability and conƟnuous improvement.

 Enables beƩer handling of complex and large projects.

꼡 5. Conclusion:

 Both are important and complement each other.

 A good product needs a good process behind it.

 In the long term, the process is slightly more important because it ensures quality,
reliability, and conƟnuous improvement of the product.

Q15. McCall's Quality Factors with Quality Triangle :

 McCall’s quality model (developed in 1977) is one of the earliest models to define soŌware
quality.

 It defines quality based on the needs of users, developers, and maintainers.

 Give structured evaluaƟon of soŌware quality.

 Used as a foundaƟon for modern quality models.

 The model organizes quality into three major perspecƟves, forming a Quality Triangle:

o Product OperaƟon

o Product Revision

o Product TransiƟon

 # Quality Triangle – Three Main PerspecƟves:

 A. Product OperaƟon (During soŌware use):

1. Correctness – Performs all required funcƟons accurately.

2. Reliability – Works consistently without failure.

3. Efficiency – Uses system resources opƟmally (CPU, memory, Ɵme).

4. Integrity – Protects data from unauthorized access.

5. Usability – Easy to learn and operate for users.

 B. Product Revision (During maintenance and updates):

6. Maintainability – Easy to find and fix issues.

7. Flexibility – Easy to modify or enhance for new needs.

8. Testability – Easy to test for bugs and errors.

C. Product TransiƟon (When moving to a new environment):

9. Portability – Can run on different hardware or OS.

10. Reusability – Code/components can be reused in other projects.

11. Interoperability – Can work with other systems or soŌware.

Q16. Difference between Horizontal & VerƟcal ParƟƟoning:-

Aspect Horizontal ParƟƟoning VerƟcal ParƟƟoning

1. DefiniƟon
Divides the system into layers based on
funcƟonal tasks.

Divides the system based on major
funcƟons or features.

2. Focus
Focuses on separaƟng input,
processing, and output tasks.

Focuses on separaƟng control and
processing logic for features.

3. Structure
Layers such as UI → Business Logic →
Data Layer.

Modules for specific tasks like login,
payment, reports, etc.

4. Flow
DirecƟon

Flow of control or data is usually top to
boƩom.

Flow of control is usually feature-wise (end-
to-end).

5. Example
Web applicaƟon: UI layer, logic layer,
data access layer.

ATM system: Card validaƟon, transacƟon
processing, receipt print.

Q17. Generic SoŌware :-

 SoŌware designed for wide applicaƟons, not customized for specific tasks.

 Ex: Word processors, spreadsheets, email clients.

 Reusable across mulƟple users/organizaƟons.

 Configurable for user-specific seƫngs.

